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Distortions in the FID and spin echo due to magnetic field Webb, Spielman, and Macovski (8) proposed mapping
inhomogeneity are proved to have a representation as the charac- the field inhomogeneity and using this map to correct ob-
teristic function of some probability distribution. In the special served NMR signals, while Provencher (9) directly modeled
case that the distribution is Cauchy, the model reduces to the the distortions by an arbitrary smooth function in the fre-
conventional Lorentzian model. A more general and flexible repre- quency domain. Webb, Collins, and Leach (10) represented
sentation is presented using the Fourier transform of a logspline

spectral peaks as the sum of Lorentzian ‘‘spexels’’ selecteddensity. An algorithm for fitting the model is described, the perfor-
using a stochastic algorithm.mance of the model and algorithm is investigated in applications

Raz, Chenevert, and Fernandez (11) , who we cite as RCFto real and simulated data sets, and the logspline approach is
in the following, gave a heuristic justification for represent-compared to a previous Hermitian spline approach and to the

Lorentzian model. The logspline model is more parsimonious than ing the distorting function as proportional to a probability
the Hermitian spline model, provides a better fit to real data, and density function in the frequency domain and as proportional
is much less biased than the Lorentzian model. q 1997 Academic Press to a characteristic function (the Fourier transform of a proba-

bility density function) in the time domain. In this article,
we prove that the characteristic function representation is
correct under very general conditions.INTRODUCTION

RCF approximated the complex-valued distorting function
in the time domain by two regression splines, one con-In a homogeneous magnetic field, the free induction decay
strained to be an even function and the other to be an oddis the sum of exponentially decaying complex exponentials,
function, so that the resulting complex-valued function wasand the spectral peaks have a perfect Lorentzian form with
constrained to be Hermitian. The primary disadvantage ofwidths proportional to 1/T2 . In practical applications, mag-
this approach is that the Hermitian spline does not includenetic field inhomogeneity shortens the observed decay time,
the more restrictive constraint that a characteristic functionthus broadening spectral peaks. Furthermore, in an inhomo-
be nonnegative definite. A secondary disadvantage is that ingeneous field the decay is not necessarily exponential, so
typical NMR data sets the phases of the components arethe peaks depart from the Lorentzian shape.
constrained to vary linearly with the frequency, and the Her-Many previous authors have suggested fitting NMR sig-
mitian spline model makes it difficult to enforce this con-nals in the time or frequency domain by an exponential
straint. A third limitation of the Hermitian spline model isdecay (Lorentzian) model with a relaxation time denoted
that it requires very precise knowledge of the echo time t;by T*2 , where the asterisk indicates the reduction due to
RCF performed a grid search over values of t in fitting theinhomogeneity (1–5) . These models will lead to biased
model.estimates of amplitudes if the true decay is not exponential

As an alternative to the Hermitian spline model, we pro-and the spectral peaks overlap. Estimates of the true values
pose a flexible model in which the distorting function isof T2 from multiple spin echoes (where a separate T*2 model
proportional to a logspline density function in the frequencyis fitted to each of the spin echoes) also will be biased.
domain and thus constrained to be nonnegative definite inThe HOGWASH (6) and QUALITY (7) methods convert
the time domain. The linear-phase constraint is enforced asnonexponential decay to exponential decay under the as-
a natural feature of the model, and any errors in the prespeci-sumption that all components are distorted by the same
fied value of t are absorbed into the phase parameter.multiplicative function. HOGWASH requires an isolated

Like many previous authors (6–8) , we assume a time-spectral peak, while QUALITY requires a high signal-to-
domain model in which the sum of exponentially decayingnoise ratio (SNR) reference signal with known (or precisely

estimated) frequency, phase, and decay rate. complex exponentials is multiplied by the distorting function
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174 RAZ, FERNANDEZ, AND GILLESPIE

that represents inhomogeneity effects. In contrast to the ap- where, with V denoting the excited volume,
proach of Webb, Spielman, and Macovski (8) , our method
does not require additional mapping scans, and does include

c( t) Å *
V

e iDv(r ) tdr1dr2dr3 . [3]estimation of the true value of T2 as part of the analysis.
In the next two sections, we specify our logspline model

of the FID and spin echo. Then we describe maximum likeli- Webb, Spielman, and Macovski (8) proposed measuring a
hood estimation of the model parameters. We report the discretized version of Dv(r) , and thus computing an ap-
results of applications of the logspline model to real and proximation to c( t) .
simulated spin echoes, with an emphasis on estimation of We now show that the distorting function c( t) is propor-
T2 , and we compare the logspline model to the Hermitian tional to a characteristic function.
spline model of RCF and the conventional Lorentzian model.

THEOREM. Let V be a bounded Lebesgue measurable
subset of R 3 , let Dv(r) be a Lebesgue measurable functionMODELS FOR THE FID AND SPIN ECHO UNDER
on V, and define c( t) by Eq. [3] . Then there exists a cumula-HOMOGENEOUS AND INHOMOGENEOUS
tive distribution function F such thatMAGNETIC FIELDS

In this section, we first describe an idealized model for
c( t) } * e ixtdF(x) , [4]the FID under a homogeneous magnetic field and then define

a more realistic model that includes a function representing
inhomogeneity effects, and we prove that this function is

that is, such that c( t) is proportional to the characteristic
proportional to the characteristic function of an unknown

function of F.
probability distribution. Then we give the extension of the

Proof. Let ÉVÉ Å *
V

dr1dr2dr3 . Write g(r1 , r2 , r3) Åmodel to spin-echo signals.
Let Y ( tj) denote the complex-valued FID at time tj ( j Dv(r) . Let (U1 , U2 , U3) be a random vector with support

Å 1, . . . , u with the tj equally spaced and t1 Å 0 denoting V and constant density 1/ÉVÉ. Define the random variable
the time of the excitation pulse ) , and let N ( tj) denote a W Å g(U1 , U2 , U3) ; let F be its cumulative distribution
complex-valued Gaussian white-noise process. In a ho- function and let cF( t) be its characteristic function. We can
mogeneous magnetic field, the digitized FID will have also write this characteristic function in the form
the form

cF( t) Å E{exp[ itg(U1 , U2 , U3)]}
Y ( tj) Å ∑

K

kÅ1

akexp[0bktj / ivk( tj / f)] / N( tj) ,
Å (1/ÉVÉ) *

V

exp[ itg(u1 , u2 , u3)]du1du2du3 , [5]

j Å 1, . . . , u , [1]

where E(U) denotes the expectation of the random variable
where ak is the amplitude of component k , bk is the decay U . The right-hand integral is by definition c( t) , so we have
rate (1/T2) , vk is the frequency, and fvk is the phase. The shown that c( t) Å ÉVÉcF( t) ; that is, c( t) is proportional
phase term arises from imperfect knowledge of the relation- to the characteristic function of F .
ship between the start of data acquisition and the start of Necessary and sufficient conditions for a function c( t) to
the NMR signal. be a characteristic function are that it be nonnegative definite

Magnetic field inhomogeneity causes the frequency vk to and that c(0) Å 1 (12) . Since c( t) is nonnegative definite,
vary among the nuclei in the object. De Graaf et al. (7) , it is necessarily Hermitian; that is, the real part is an even
Webb, Spielman, and Macovski (8) , and others assumed function and the imaginary part is an odd function. RCF
that B0 inhomogeneity has the same effect on every spectral approximated c( t) by a regression spline that was con-
component. Under this assumption we may replace vk by strained to be Hermitian, but not necessarily nonnegative
vk /Dv(r) , where r Å (r1 , r2 , r3) is a vector of coordinates definite.
in three-dimensional space, and Dv(r) is the deviation of Two simple models that have been discussed in the NMR
the true frequency at spatial location r from the average literature are special cases of [2] with c( t) defined to be a
frequency. Then the FID results from integrating over the characteristic function. If F is a median zero Cauchy distri-
entire excited volume (7) , bution, then

Y ( tj) Å c( tj / f) ∑
K

kÅ1

ak c( t) Å e0gÉtÉ , g ú 0. [6]

If we assume that f ú 0, let b*k Å bk / g, T*2k Å 1/b*k ,1 exp[0bktj / ivk( tj / f)] / N( tj) , [2]
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175LOGSPLINE DENSITY MODELS OF LINESHAPES

tiple spin-echo data sets acquired at distinct echo times.and a*k Å exp(0gf)a, then Eq. [2] with c defined by Eq.
However, it is theoretically possible to estimate the decay[6] becomes
rates b1 , . . . , bK (and thus the values of T2 , which are their
reciprocals) from a single spin echo, since c in model [9]Y ( tj) Å ∑

K

kÅ1

a*k exp[0tj/T*2k / ivk( tj / f)] / N( tj) . [7]
is a Hermitian function centered at t Å t 0 f, while the
true spin–spin relaxation is centered at t Å 0.

This is the conventional Lorentzian model with T*2 replacing
LOGSPLINE REPRESENTATIONT2 (1–5) .

OF CHARACTERISTIC FUNCTIONSIf F is a mean zero normal distribution, then

The characteristic function representation of c suggests ac( t) Å e0g t2
, g ú 0, [8]

wide range of parametric models, such as the simple ones
derived by assuming that F is Cauchy or normal. However,leading to a model suggested by Barkhuijsen, de Beer, and
the functional form of c is typically unknown, and it willvan Ormondt (13) .
vary among NMR data sets. This suggests that we shouldWhen Y ( tj) is a spin-echo signal, rather than an FID, then
develop a flexible and parsimonious representation of anthe model defined by Eq. [2] becomes
arbitrary characteristic function, insert this representation for
c in model [9] or [11], and fit this model to spin-echo data.

Y ( tj) Å c( tj 0 t / f) ∑
K

kÅ1

ak Stone and Koo (14) , Kooperberg and Stone (15) , and
others suggested estimating unknown densities by fitting a

1 exp[0bktj / ivk( tj 0 t / f)] / N( tj) , [9] logspline model, which is a simple and flexible representa-
tion of an arbitrary density function. We suggest representing

where tj denotes time from the excitation pulse and t is the an arbitrary characteristic function by the Fourier transform
echo time. of a logspline density function. Let B1(r) , . . . , Bq(r) be B-

Combining Eqs. [9] and [6], we see that the Lorentzian spline basis functions (16) . B-spline basis functions span
model of the spin echo has the form the space of piecewise polynomials with continuity con-

straints at the values at which the polynomials are joined.
The join points are called ‘‘knots.’’

Let j Å (j1 , . . . , jq)T be a vector of coefficients for the
q B-splines. Then the logspline representation of c( t) has

Y ( tj) Å

eg(t0f ) ∑
K

kÅ1

akexp[0(bk / g) tj

/ ivk( tj / f)] / N( tj) , tj § t 0 f

e0g(t0f ) ∑
K

kÅ1

akexp[0(bk 0 g) tj

/ ivk( tj / f)] / N( tj) , tj õ t 0 f.

the form

c( t ; j) Å * e ixt f ( x ; j)dx , [12]

[10] where the logspline density is

When multiple spin-echo data sets are acquired at distinct
echo times in repeated experiments, each using a single exci- f ( x ; j) Å [1/c(j)]exp[ ∑

q

mÅ1

jmBm(x)] [13]
tation pulse and single refocusing pulse, we assume a model
of the form

with normalizing constant

Ys( tjs) Å c( tjs 0 ts / fs) ∑
K

kÅ1

ak

c(j) Å * exp[ ∑
q

mÅ1

jmBm(x)]dx . [14]

1 exp[0bktjs / ivk( tjs 0 ts / fs)] / Ns( tjs) ,

s Å 1, . . . , S , j Å 1, . . . , us , [11] These integrals can be evaluated analytically if the Bm are
basis functions for linear splines, but not if they are higher-
order spline basis functions. However, Fourier integrals canwhere Ys( tjs) is the complex-valued signal acquired at times

tjs ( j Å 1, . . . , us) in spin-echo data set s , ts is the echo be closely approximated using the fast Fourier transform
(FFT) with oversampling and an appropriate tapering func-time in data set s , fs is a factor giving the phase in data set

s , Ns( t) is the noise process, and S is the number of spin- tion (17) . We approximated the integral in [12] by oversam-
pling by a factor of 2 and applying a trapezoidal taper.echo data sets.

Investigators typically estimate the values of T2 from mul- The endpoint corrections given by Press et al. (17) were
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176 RAZ, FERNANDEZ, AND GILLESPIE

unnecessary, since the estimated logspline density functions Kooperberg and Stone (15) gave recommended values
for the number of knots as a function of sample size, butdecayed to very close to numerical zero near the endpoints.

If this were not true, it would mean that the magnetic field their procedure does not apply to nonlinear regression mod-
els such as Eq. [2] with c defined in terms of a fixed knotinhomogeneity was so severe that peaks in the NMR spec-

trum would be blurred across the entire frequency band. logspline. However, RCF found that model selection criteria
such as the Akaiki Information Criterion (AIC) and theThe normalizing constant c(j) could be absorbed into the

amplitudes ak in Eqs. [2] , [9] , and [11] but this leads to Schwartz Bayesian Criterion (SBC) performed well in se-
lecting the number of knots in the Hermitian spline model,numerical difficulties and should be avoided. Instead, we

represent c(j) by the discretized form: and we expect that they would perform well in the logspline
model. The phantom data used in our study had a very high
signal-to-noise ratio (greater than 4000:1) , so we selectedc(j) Å ∑

l

exp[ ∑
q

mÅ1

jmBm(xl)] . [15]
the number of knots as the minimum number that gave a
nearly perfect fit.

Given the number of knots, we specify the knot locationsIf necessary for preventing numerical underflows or over-
using the following procedure. We always put knots at theflows, any constant may be multiplied by c(j) . Since c( t)
points 01, 0, 1, since the top of the spectral peak is veryis proportional but not equal to a characteristic function,
important in determining the shape of the time-domain func-there is no need to accurately approximate the normalizing
tion c( t) . We obtain a preliminary estimate of f ( x) withconstant; the discretized c(j) is included in the model for
additional knots symmetrically arranged around 0. Place-numerical stability. (But note that it is a function of the
ment of these knots can be determined by inspection of theunknown parameter vector j , which is updated in the itera-
observed spectrum of exp(bt)y( t) , where b is set equaltive fitting procedure described below.)
to a preliminary estimate of the decay rate of one of theWe refer to model [9] or model [11] with c( t) defined
components. For the final estimate, we place knots at equallyby [12] as the logspline model of the spin echo. Note that
spaced quantiles of the preliminary estimate of f ( x) , withthe lineshape implied by this model is the convolution of
the first knot at the e quantile and the last at the 1 0 ethe logspline density function with a Lorentzian function
quantile, where e is 0.01 for a small number of knots and[the Fourier transform of exp(0bkt)] .
0.005 or 0.001 for a large number of knots. In some applica-We found that quadratic splines (piecewise quadratic
tions, prior knowledge will be available that can be helpfulpolynomials) performed better in practice than linear or cu-
in choosing knot locations. For example, the spectrum mightbic splines. A potential advantage of the quadratic spline
show two peaks at frequencies for which only a single com-is that it can be considered a generalization of the normal
ponent is known to exist, indicating that f ( x) is bimodal.distribution, which was used in a model of NMR spectra
In such a case, the knots can be chosen with the aid of asuggested by Barkhuijsen et al. (13) . A set of q quadratic
plot of the spectrum of exp(bt)y( t) .B-spline basis functions defines a piecewise quadratic poly-

nomial with q 0 2 knots.
When c( t) in model [9] or [11] is defined by Eq. [12], MAXIMUM LIKELIHOOD ESTIMATION

the model is not identifiable, since adding a constant to each OF MODEL PARAMETERS
frequency vk is equivalent to shifting the location of the

Given specified values of the echo time t and the B-density f . For this reason, we treat one of the frequencies
spline basis functions, the logspline model is a fully specifiedas a known constant when fitting the model. Identifiability
parametric model in terms of the parameter vectors a Åconsiderations also require that the spline function have zero
(a1 , . . . , aK)T , j , and u Å (b1 , . . . , bK , v2 , . . . , vK , f)T ,intercept; this can be achieved by eliminating the first basis
where v1 is set equal to its starting value and treated as afunction. We generated discrete time B-spline basis func-
known constant. Under the assumption that the noise processtions using the function bs( ) in the S-plus language for
N( tj) is complex-valued Gaussian white noise, the maximumstatistical analysis and graphics (18) . By default, this func-
likelihood estimates minimize the objective functiontion assumes zero intercept (18) .

Model [2] specifies that c( t) be evaluated at tj / f rather
than at the time points tj . This is achieved by defining gf( x ; L(a , j , u) Å ∑

u

jÅ1

Éy( tj) 0 c( tj 0 t / f; j)
j) Å e ixff ( x ; j) and writing the Fourier integral as

1 ∑
K

kÅ1

akexp[0bktj / ivk( tj 0 t / f)]É2 . [17]c( t / f; j) Å * e ixtgf( x ; j)dx . [16]

Given j and u , the model is linear in the vector a . TheThis integral is approximated by evaluating gf( x ; j) at dis-
crete values of x and then applying the FFT and taper. partial linearity may be exploited by ‘‘concentrating out’’ a
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177LOGSPLINE DENSITY MODELS OF LINESHAPES

in a ‘‘concentrated’’ or ‘‘profile’’ likelihood (19) ; algo- to obtain a starting value for the decay parameter bk . We
define a preliminary estimate of c( t) to be equal to e0gÉt0tÉrithms based on this property have been applied under the

name ‘‘Variable Projection’’ to NMR data (4, 5) . We use with g set equal to the value computed from the demodulate
of the highest peak. Then we compute amplitude parametersa related but simpler algorithm that is similar to several

procedures described by Seber and Wild (19) . Given starting a1 , . . . , aK by ordinary least squares. We compute starting
values for j by a linear fit of the B-spline (with an intercept)values, we alternate a Levenberg–Marquardt update of u

and jwith a least-squares computation of a given the current to 0gÉt 0 t / fÉ. The estimate of the intercept coefficient
is not used, but it must be included in the model to accountvalues of u and j . This algorithm is the same as that used

by RCF, except that here a is treated as the linear parameter, for the normalizing constant in the logspline density.
The value of t can be computed from the timing of thewhile in RCF the vector of Hermitian spline coefficients was

the linear parameter. data acquisition and is not updated in the iterative fitting
algorithm. Any error in t will be absorbed into the estimateThe Levenberg–Marquardt step requires the first deriva-

tive of the expectation of Y ( t) with respect to the parameters, of f. If the computed t is far from the true value (so the
estimated value of f is large in absolute value) then refittingand thus the first derivative of c( t / f; j) with respect to

j and f. These derivatives are approximated by taking the with an improved value of t based on the estimate of f may
give a better fit.derivatives under the integral in Eq. [16] and then approxi-

mating the resulting Fourier integral. The derivative of f ( x ; In fitting multiple spin-echo data sets, we compute starting
values for the decay parameters bk from the peak heights ofj) is evaluated by taking derivatives of both the numerator

and the denominator in Eq. [13] with c(j) defined by Eq. the spectra.
[15]. Each Levenberg–Marquardt update requires q / 2
FFTs, one to approximate c( t ; j) , one to approximate its APPLICATIONS TO PHANTOM DATA
derivative with respect to f, and q to approximate its deriva-
tives with respect to j . We compared the fit of the logspline model to that of the

Lorentzian model and the Hermitian spline model of RCFWe also implemented an algorithm that fits the Lorentzian
model [10] to a time-domain spin-echo signal. The model in applications to hydrogen (1H) spin echoes acquired from

six different chemical samples (‘‘phantoms’’) . We also usedand algorithm include the linear-phase assumption and thus
differ slightly from those used by RCF. these applications to demonstrate the feasibility of estimating

T2 from a single spin echo.The algorithm for fitting model [11] to multiple spin-echo
data sets acquired at distinct echo times is the same as that The first set of three phantoms, which we denote by W5,

W10, and W20, contained distilled water with 50, 100, orfor single spin-echo data sets, except that a separate phase
parameter fs is estimated for each echo. 200 micromolar (mM) concentration of manganese chloride

(MnCl2) in solution. The T2 of the hydrogen nuclei (protons)When fitting the logspline model to spin echoes with two
poorly separated spectral peaks, the optimization algorithm in the water decreases with increasing concentration of

MnCl2 . There is a single component in echoes acquired fromoccasionally converges to a local minimum in which f ( x)
is bimodal, and one of the modes of f ( x) explains part of these phantoms (K Å 1). The second set of two phantoms,

which we denote by D5 and D10, contained dioxaneone of the peaks. Refitting with different knot locations and/
or a different number of knots solved this problem when (C4H8O2) mixed with a solution of 50 or 100 mM MnCl2 in

distilled water. The W and D sets of water/manganese solu-we encountered it. In such cases, the model based on the
local minimum had a noticeably poor fit, and the true mini- tions were prepared at different times and probably contained

slightly different molar concentrations of manganese, evenmum gave much smaller values of the objective function.
We suspect that this problem also could arise in very noisy when the nominal concentrations were the same. The final

phantom, which we denote by MeOH, contained pure metha-data with more than two peaks if all the peaks are arranged
in pairs. nol (CH3OH). Echoes acquired from the D5, D10, and

MeOH phantoms have two components (K Å 2). All signalsWe define the starting values for the frequencies v1 , . . . ,
vK to be the peak frequencies in the magnitude spectrum. comprised u Å 1022 time points. (The data included 1024

points but the first two contained artifacts.) Spin echoes wereFor identifiability, we treat the frequency corresponding to
the highest peak as a known constant in the iterative algo- acquired from the W5 phantom with nominal echo times t

Å 50, 100, 200 ms, and were digitized at 40,000 hertz. Spinrithm. To define starting values for the phase parameter f,
we compute the complex demodulate (20) of the data at echoes were acquired from the other five phantoms with

nominal echo times t Å 50, 100, 200, 300 ms, and werethese peak frequencies, and compute f from the argument
of the demodulate of the highest peak, remembering that the digitized at 20,000 hertz.

Acquisition was performed by a 2 T/31 cm Omega CSIphase is actually fvk rather than f itself. For k Å 1, . . . ,
K , we use weighted least squares to fit 0bkt 0 gÉt 0 t / spectrometer (Bruker Instruments; formerly GE NMR in-

struments, Fremont, CA), using a 14 cm birdcage-designfÉ to the logarithm of the magnitude of the k th demodulate
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178 RAZ, FERNANDEZ, AND GILLESPIE

FIG. 1. Comparison of the modulus of two fitted time-domain models with the modulus of the spin echo acquired from a phantom containing
methanol. (a) Logspline model. (b) Lorentzian model. In both plots, the solid line indicates the data, the dashed line the model, and the dotted line the
difference between the data and model (residuals) . The logspline model nearly interpolates the data, while the Lorentzian model exhibits serious bias.

transmit and receive RF coil. The pulse sequence was a based on the Hermitian spline model and the Lorentzian
model without the assumption of linear phase. The Hermitian907—1807—acquisition. All acquisitions were performed

with only partial optimization of the shimming, so that con- spline model included a total of 16 spline coefficients, corre-
sponding to 6 knots (which are used for both the real andsiderable inhomogeneity was present. The signals were aver-

ages of 32 phase-cycled (21) acquisitions following 8 the imaginary parts of the Hermitian spline function). The
total number of parameters in the Hermitian spline modeldummy scans, giving spin echoes with very high SNR. The

phase cycling is essential for estimation of T2 from a single was 23.
We fitted both the logspline model and the Lorentzianspin echo, since the effects of an imperfect refocusing pulse

can obscure the subtle T2 effects. model with linear phase to each of the single spin-echo data
sets. The logspline models had 7, 11, or 15 knots (9, 13, orRCF reported estimated values of T2 for these data sets

FIG. 2. Comparison of the real part of two fitted time-domain models with the real part of the spin echo acquired from a phantom containing
methanol. (a) Logspline model. (b) Lorentzian model.
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179LOGSPLINE DENSITY MODELS OF LINESHAPES

FIG. 3. Comparison of the spectrum (modulus of the Fourier transform) of two fitted time-domain models with the spectrum of the spin echo acquired
from a phantom containing methanol. (a) Logspline model. (b) Lorentzian model.

17 spline coefficients; 15, 19, or 23 total parameters) . When tions of c to all available echoes acquired from a particu-
lar phantom ( three echoes for the W5 phantom, four forfitting the 7- and 15-knot models, the iterative algorithm

converged to excellent fits in most analyses, but to obvious the other five phantoms) . These multiecho estimates were
almost identical to the Hermitian spline and Lorentzianlocal minima for a few of the echoes, while the 11-knot

models seemed to give excellent fits in all cases. Further- estimates given by RCF.
Table 1 shows the estimated T2 values (computed as themore, the 11-knot models gave considerably smaller values

of the objective function than the 7-knot models, but the 15- reciprocal of the estimated decay rates) of the W20, W10,
knot models at best provided little additional improvement,
and they generally gave point estimates close to those from

TABLE 1the 11-knot models. For these reasons, we report results only
Estimated T2 (in Milliseconds) of Protons in Three Waterfrom the 11-knot models.

Phantoms for Two Inhomogeneity Models a
In all analyses (a total of 23 spin-echo data sets) , the fit

of the logspline model, as measured by the objective func-
Inhomogeneity model

tion, was much better than the fit of the Lorentzian model.
Furthermore, in 17 of the 23 analyses, the fit of the logspline Phantom t Lorentz Logspline
model was better than that of the Hermitian spline model,

W20 All 55 55even though the 11-knot logspline model is more parsimoni-
50 54 56ous than the 6-knot Hermitian spline model used by RCF.

100 54 56
This result suggests that the more restrictive assumptions 200 53 55
(nonnegative definite c and linear phase) of the logspline

W10 All 94 94model are justified.
50 83 96

Figures 1 and 2 compare the fitted logspline and Lo- 100 82 96
rentzian models to the time-domain signal of a selected spin 200 82 98

300 90 100echo. Figure 3 compares the fitted models to the magnitude
spectrum of the spin echo. These figures are very similar to W5 All 198 196
Fig. 3 of RCF, since the error in both the logspline model 50 189 209

100 180 210and the Hermitian spline model of RCF is very small, while
200 188 213the Lorentzian model with or without the linear-phase as-
300 202 222sumption shows obvious model misspecification. Results for

the other echoes are qualitatively similar. a In the column headed t, the numerical values are for the single-echo
We also computed ‘‘gold standard’’ T2 estimates by estimates, while ‘‘All’’ indicates the ‘‘gold standard’’ multiecho estimates.

These gold standard estimates are highlighted by boldface type.fitting model [11] with the logspline or Lorentzian defini-
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TABLE 2 B , then r Å 1. When r is computed from the logarithms
Estimated T2 (in Milliseconds) of Protons in Two Water/Dioxane of the T2 estimates, it is identical to r computed from the

Phantoms and the Methanol Phantom for Two Inhomogeneity logarithms of the bk estimates.
Models a

Based on the logarithms of the estimates in Tables 1 and
2 with the logspline multiecho estimates as the gold standard,Inhomogeneity model
r Å 0.98 for the logspline single-echo estimates and 0.90
for the Lorentzian single-echo estimates. The performancePhantom t Lorentz Logspline

of the Lorentzian model was even worse in applications to
D10 All 118, 2086 107, 1788 echoes with two components (Table 2, r Å 0.86), while the

50 116, 3009 111, 1827 logspline model showed no difficulty with two components100 115, 2088 108, 1613
(Table 2, r Å 0.98). This indicates the importance of cor-200 135, 2296 106, 1916
rectly modeling the inhomogeneity distortions in separating300 197, 2362 126, 2064

overlapping spectral peaks. The logspline model also agreedD5 All 200, 2192 188, 1859
more with the Lorentzian multiecho gold standard estimates50 205, 3663 194, 1870
than did the Lorentzian single-echo estimates (r Å 0.99 vs100 192, 1960 191, 1656

200 214, 2080 199, 1827 r Å 0.95).
300 215, 3736 185, 2954 The Hermitian spline estimates (Tables 1 and 2 in

RCF) gave r Å 0.98 when the logspline or HermitianMeOH All 184, 382 123, 369
50 216, 368 182, 480 spline multiecho estimates were the gold standard. Thus,

100 407, 378 173, 471 the more parsimonious logspline model gave T 2 estimates
200 327, 365 139, 436 that were just as good as those produced by the Hermitian300 314, 369 143, 412

spline model.
a In the column headed t, the numerical values are for the single-echo

estimates, while ‘‘All’’ indicates the ‘‘gold standard’’ multiecho estimates. APPLICATIONS TO SIMULATED DATA
These gold standard estimates are highlighted by boldface type. For the
D10 and D5 phantoms, the first estimate in each pair corresponds to the The applications to phantom data suggested that the log-
water component, and the second to the dioxane component. For the MeOH

spline model is much better than the Lorentzian model andphantom, the first estimate corresponds to the hydroxyl component, and the
gives somewhat better fits than the Hermitian spline modelsecond to the methyl component.
while using fewer parameters. However, the phantom data
sets were nearly free of noise. To further compare the mod-
els, we analyzed simulated data with three different SNRs

and W5 phantoms, while Table 2 shows the estimated T2 ( infinite, 100, and 10, where SNR was defined as in RCF)
values of the D10, D5, and MeOH phantoms. Two estimates, and known parameter values as in RCF (except that linear
the reciprocals of the estimated b1 and b2 , are shown for phase was assumed and the phase f was set equal to zero) .
each echo and model in Table 2. For the D10 and D5 phan- As in RCF, the simulated c function was the characteristic
toms, the T2 estimates are for water first, and then dioxane. function of a mixture of two stable distributions that are
For the MeOH phantom, the estimates are for hydroxyl pro- intermediate between the Cauchy and a normal. This func-
tons first, followed by methyl protons. tion is similar to the estimated c functions from the analyses

We quantified the agreement between the single-echo and of the phantom data and was not generated from a Lo-
multiecho T2 estimates using a quantity defined by rentzian, Hermitian spline, or logspline model.

For each of two sets of parameter values (based on analy-
ses of the water/dioxane and methanol data sets) and threer Å F1 / (B

bÅ1 (xb 0 yb)2

(B
bÅ1 (xb 0 x. )

2G01

, [18]
SNRs, we simulated 100 spin echoes and analyzed them
with each of five models: Hermitian spline with 2 or 4 knots
(15 or 19 total parameters including 1 amplitude, 2 decaywhere x1 , . . . , xB , are the logarithms of the multiecho gold

standard T2 estimates (boldface type in Table 1 or 2), x. Å parameters, 2 frequencies, 2 phases, and 8 or 12 spline coef-
ficients) , logspline with 7 or 11 knots (15 or 19 total parame-(1/B) ( xb , and y1 , . . . , yB are the logarithms of the single-

echo estimates (roman type in Table 1 or 2). The quantity ters including 2 amplitudes, 2 decay parameters, 1 frequency,
1 phase, and 9 or 13 spline coefficients) , and Lorentzianr was recently proposed by Roy St. Laurent (personal com-

munication), and is similar to the ‘‘concordance correlation with linear phase (8 parameters) . The knot locations for the
Hermitian spline were as in RCF, while the knot locationscoefficient’’ of Lin (22) . If there is infinite disagreement

between x and y , then r Å 0; if x and y are independent and for the logspline were chosen as described under Logspline
Representation of Characteristic Functions, using a prelimi-identically distributed Gaussian random variables and B is

large, then r is approximately 1
3; if xb Å yb for b Å 1, . . . , nary fit to the simulated spin echo without noise. Thus, the
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TABLE 3
Results of Simulation Study Based on Methanol Data: Estimated Bias of Estimators (as Percentage of True Parameter Value) of

Amplitudes (ak) and Decay Rates (bk), for Each Signal-to-Noise Ratio (SNR) and Five Inhomogeneity Models (with the Number of
Model Parameters in Parentheses)

Inhomogeneity model

Hermitian spline Hermitian spline Logspline Logspline Lorentzian
SNR Estimator (15) (19) (15) (19) (8)

` â1 5.6 0.9 2.1 1.0 0.9
â2 7.5 1.0 1.7 0.4 3.3
bO 1 18.2 0.1 16.9 1.3 15.2
bO 2 2.1 0.0 0.7 0.1 8.7

100 â1 05.3 00.7 01.9 00.7 00.6
â2 07.5 01.0 01.7 00.4 03.3
bO 1 018.0 0.3 016.6 1.5 014.9
bO 2 2.3 0.2 00.4 0.3 8.9

10 â1 05.9 0.2 0.4 1.0 0.3
â2 06.3 0.3 1.0 1.8 01.8
bO 1 026.9 05.3 020.4 05.1 018.4
bO 2 6.3 4.9 4.2 4.3 14.0

Note. The true parameter values were a1 Å 0.2981, a2 Å 0.8054, b1 Å 0.004802 ms01, b2 Å 0.002216 ms01, v1 Å 5.7301 rad/ms Å 10.666 ppm, v2

Å 4.8889 rad/ms Å 9.100 ppm, and f Å 0 ms. The amplitudes are in arbitrary units.

simulations ignored the variability due to empirical selection RCF because the simulations used different phase parameters
and different random number seeds. The Lorentzian resultsof knots from a noisy data set.

Tables 3 and 5 give the estimated bias of the estimators also differ from those in RCF, because the Lorentzian model
applied here assumes linear phase, while the Lorentzianof the two amplitudes (a1 and a2) and two decay parameters

(b1 and b2) . The estimated bias is expressed as a percentage model in RCF allowed separate phase parameters for each
component.of the true parameter value. (The second amplitude in the

Hermitian spline model is not explicitly modeled; instead, The two spline models with 19 total parameters gave
nearly unbiased estimates and much lower bias than theit is derived from the estimated spline function.)

The Hermitian spline results differ slightly from those in Lorentzian model, regardless of the SNR (Tables 3 and

TABLE 4
Results of Simulation Study Based on Methanol Data: Estimated Root Mean Square Error of Estimators (as Percentage of True

Parameter Value) of Amplitudes (ak) and Decay Rates (bk), for Each Signal-to-Noise Ratio (SNR) and Five Inhomogeneity Models
(with the Number of Model Parameters in Parentheses)

Inhomogeneity model

Hermitian spline Hermitian spline Logspline Logspline Lorentzian
SNR Estimator (15) (19) (15) (19) (8)

100 â1 5.9 3.1 3.2 3.1 2.6
â2 7.6 1.3 1.9 0.9 3.4
bO 1 18.8 6.3 17.5 6.5 15.9
bO 2 4.4 3.7 3.6 3.7 9.8

10 â1 23.7 27.3 24.7 28.7 23.5
â2 9.5 7.6 8.5 19.3 8.1
bO 1 73.2 57.2 54.0 58.0 52.0
bO 2 34.4 33.9 34.3 34.2 38.6

Note. The root mean square for the SNR Å ` case is equal to the absolute value of the bias given in Table 3. The true parameter values are given in
the footnote to Table 3.
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TABLE 5
Results of Simulation Study Based on Water/Dioxane Data: Estimated Bias of Estimators (as Percentage of True Parameter Value)

of Amplitudes (ak) and Decay Rates (bk), for Each Signal-to-Noise Ratio (SNR) and Five Inhomogeneity Models (with the Number
of Model Parameters in Parentheses)

Inhomogeneity model

Hermitian spline Hermitian spline Logspline Logspline Lorentzian
SNR Estimator (15) (19) (15) (19) (8)

` â1 05.6 01.0 03.1 00.6 05.2
â2 01.4 01.0 0.4 00.8 06.5
bO 1 5.7 0.2 03.5 0.1 011.3
bO 2 16.1 0.1 20.9 01.5 13.2

100 â1 05.7 01.1 03.2 00.6 05.3
â2 01.5 01.0 0.4 00.8 06.6
bO 1 5.6 0.0 03.6 00.1 011.4
bO 2 14.6 01.0 19.7 02.9 11.7

10 â1 06.0 01.5 03.0 0.8 05.9
â2 08.2 00.5 1.5 1.9 06.0
bO 1 4.4 01.2 05.3 01.0 012.7
bO 2 14.4 00.9 17.4 04.6 11.2

Note. The true parameter values were a1 Å 0.8607, a2 Å 0.465, b1 Å 0.009277 ms01, b2 Å 0.0006119 ms01, v1 Å 05.8742 rad/ms Å 010.935 ppm,
v2 Å 06.3240 rad/ms Å 011.772 ppm, and f Å 0.0 ms. The amplitudes are in arbitrary units.

5 ) . With 15 total parameters, the logspline estimators of (RMSE ) of the estimators. The square of the RMSE
equals the variance plus the squared bias. Tables 4 andthe amplitudes were nearly unbiased and had less bias

than the Hermitian spline estimators with 15 parameters. 6 give the estimated RMSE as a percentage of the true
parameter value. When the SNR was 100, the spline mod-The Lorentzian model and both 15-parameter spline

models gave quite biased estimates of one of the decay els with 19 total parameters had much lower RMSE than
did the Lorentzian model. None of the models had consis-parameters (b1 in Table 3 and b2 in Table 5 ) regardless

of SNR. tently lowest RMSE when the SNR was 10. The logspline
model with 15 parameters gave lower RMSE than theDecreasing bias tends to increase variance, so it is

important to compare the root mean square error Hermitian spline model with the same number of para-

TABLE 6
Results of Simulation Study Based on Water/Dioxane Data: Estimated Root Mean Square Error of Estimators (as Percentage of

True Parameter Value) of Amplitudes (ak) and Decay Rates (bk), for Each Signal-to-Noise Ratio (SNR) and Five Inhomogeneity
Models (with the Number of Model Parameters in Parentheses)

Inhomogeneity model

Hermitian spline Hermitian spline Logspline Logspline Lorentzian
SNR Estimator (15) (19) (15) (19) (8)

100 â1 5.9 1.8 3.5 1.6 5.5
â2 1.9 1.6 1.3 1.4 6.7
bO 1 5.9 1.7 4.0 1.7 11.5
bO 2 24.4 20.0 27.6 20.2 25.5

10 â1 14.8 13.4 13.0 13.9 12.4
â2 9.7 9.3 9.5 10.5 11.8
bO 1 17.0 15.0 14.9 14.9 18.1
bO 2 152.1 153.1 149.6 155.9 175.4

Note. The root mean square for the SNR Å ` case is equal to the absolute value of the bias given in Table 5. The true parameter values are given in
the footnote to Table 5.

AID JMR 1195 / 6j21$$$$$5 08-01-97 20:48:18 maga



183LOGSPLINE DENSITY MODELS OF LINESHAPES
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